Мышечная система. Мышца как орган

Мышечная система

Мышечная система создаёт дополнительную опору телу животного и определяет его движение. Мышцы состоят из множества удлинённых клеток – мышечных волокон, способных сокращаться под действием электрических импульсов. Различают поперечно-полосатые, гладкие и сердечные мышцы.

Поперечно-полосатые мышцы присоединяются к костям при помощи плотных и малорастяжимых сухожилий, состоящих из коллагена. Один конец сухожилия переходит в наружную оболочку мышцы, а другой плотно прикреплен к надкостнице.

При раздражении мышечное волокно будет сокращаться только в том случае, если стимулирующий импульс превысит некоторую пороговую величину. Такое сокращение будет максимальным и не изменится при ещё большем увеличении импульса. Согласно современным представленим сокращение вызывается тем, что актиновые нити – один из типов мышечных нитей – скользят по миозиновым. Необходимая для этого энергия образуется в результате расщепления АТФ. При интенсивных сокращениях поставляемого в мышцы кислорода оказывается недостаточно; говорят, что работа мышцы создаёт кислородную задолженность. При этом начинает образовываться молочная кислота – токсичный продукт, который в печени превращается в глюкозу или полностью разлагается на углекислый газ и воду.

Тип сокращения зависит от способа фиксации мышц: он может быть изотоническим (сокращение при постоянной нагрузке) и изометрическим (мышца развивает напряжение, но её длина не изменяется). Ответ на однократное раздражение длится около 0,05 с. Фаза сокращения длится около 0,1 с, после чего наступает длительный – около 0,2 с – период расслабления, когда мышечное волокно некоторое время неспособно сокращаться. Если интервал между двумя сокращениями незначителен, то второе сокращение накладывается на первое; при этом во второй раз развивается большее напряжение. При ритмическом раздражении напряжение достигает некоторого уровня (плато) и остается на нём достаточно долго, после чего наступает утомляемость и расслабление.

Двигательные аксоны, подходя к мышцам, ветвятся. Группа мышечных волокон (в бицепсе тысячи волокон) и иннервирующий её аксон образуют двигательную единицу; все мышечные волокна в ней сокращаются одновременно. Чем меньше волокон в двигательной единице, тем более тонкий контроль осуществляется со стороны нервной системы. Регуляция напряжения, вызываемого мышцой, может осуществляться:

Изменением количества двигательных единиц, возбуждающихся в данный момент;

Изменением количества нервных импульсов в секунду.

Волокна скелетных мышц можно разделить на тонические и фазические. Тонические волокна окрашены в красный цвет, расположены в глубине мышц, имеют собственные запасы кислорода, связанного с родственным гемоглобину крови белком миоглобином. Они обеспечивают длительное сокращение мышцы (например, связанное с противодействием силе тяжести – мышцы спины, шеи, поддерживающие нижнюю челюсть). Фазические волокна преимущественно белые, залегают на поверхности мышц и обеспечивают быстрое и сильное сокращение, но быстро утомляются.



Для того, чтобы сместить кость, а затем вернуть её в первоначальное положение, необходима хотя бы пара мышц, например, сгибатель и разгибатель. Когда одна из мышц сокращается, другая должна расслабляться. Это достигается благодаря тормозным рефлексам спинного мозга, блокирующим импульсы, идущие к соответствующей группе мышц.

Гладкая мускулатура образует стенки кровеносных сосудов, кишечника, мочевого пузыря и других органов. Клетки гладкой мускулатуры образуют поперечные и продольные слои; сокращение первых приводит к удлинению и утончению органа (например, кишки); сокращение вторых вызывает обратный эффект. Гладкие мышцы способны к самопроизвольным сокращениям; так растяжение мускулатуры при наполнении пищеварительных проходов обычно сразу приводит к её сокращению. Такая координированная работа мышц называется перистальтикой и способствует перемещению содержимого внутри полых органов.

Скелетная мышечная ткань в комплексе с сухожилиями является активной частью аппарата движения животного. Закрепляясь на костях скелета как на системе рычагов, она образует прочные мышечно-костные комплексы и обеспечивает перемещение всего организма, его отдельных частей (головы, шеи, конечностей), а также дыхательные движения, жевание, глотание и т.п., поддерживает скелет в определенном положении, сохраняя форму всего организма.

Строение мышц

Движения животного крайне разнообразны. Животное может или перемещаться в пространстве, или только изменять положение отдельных частей своего тела относительно друг друга. Движения животного - ответ на раздражение, полученное из внешней или внутренней среды. В момент острого нервного возбуждения под влиянием чувства гнева, отчаяния, опасности сила мышц чрезвычайно увеличивается. На любое раздражение (механическое, химическое, электрическое) мышца отвечает укорочением, т.е. сокращением.

В процессе работы, производимой мышечной системой, до 70% химической энергии, получаемой с кровью, переходит в тепловую, а в механическую работу - лишь около 30%. Следовательно, скелетные (соматические) мышцы - не только активная часть системы органов произвольного движения, но и орган теплообразования.

Общая масса скелетных мышц составляет около 60% и зависит от массы и породы животного, его возраста и условий жизни.

По строению и функциональным признакам мышечную ткань подразделяют на поперечно-полосатую (произвольную) и гладкую (непроизвольную). Мышцы головы, шеи, туловища, конечностей и некоторых внутренних органов (глотка, верхняя часть пищевода, гортань) поперечно-полосатые (скелетные), а в стенках внутренних органов, кровеносных сосудов, протоках желез, кожи - гладкие.

Строение мышц. Скелетная мышца - активный орган произвольного движения, состоит из двух различных по функции и строению частей: мышечного брюшка и сухожилий. Мышечное брюшко, сокращаясь, производит работу, а сухожилия служат для закрепления брюшка на костях как рычагах движения (рис. 2.53).

Мышечное брюшко построено из паренхимы (мышечных волокон), нервов, сосудов и стромы (соединительнотканного остова). Сухожилие мышц состоит из коллагеновых волокон, упакованных в соединительнотканный остов, в котором проходят нервы и кровеносные сосуды. Мышца иннервируется соматическим и симпатическим (для сосудов) нервами, содержащими двигательные и чувствительные нервные волокна.

Фасции

Эпимизий

Пучок II порядка

Внутренний

перимизий

Пучок / порядка

Эндачизий

Сарколема

Коллаген

Рис. 2.53. Строение мышцы

? 4г -фі

Ретикулярные волокна Мышечно-сухожильные соединения

[Писменская В.Н., Боев В.И. Практикум по анатомии и гистологии сельскохозяйственных животных. М.: КолосС, 2010. С. 113]

Каждое мышечное волокно снабжено большим числом кровеносных капилляров, которые образуют вокруг него узко- или широкопетлистые сети, и покрыто тонкой соединительнотканной оболочкой - эндомизием. Отдельные мышечные волокна соединены в пучки первого, второго и третьего порядков, которые окружены внутренним перемизием, образованным перегородками, отходящими от наружного перемизия, - плотной соединительнотканной оболочки, покрывающей каждую мышцу. У упитанных животных в пе-ремизии накапливается жир, образуя прослойку в мышцах. Такая мраморность характерна для мяса высшей категории.

Цвет мышцы зависит от вида, пола, возраста, упитанности животных и топографии мышц. Например, мышцы у молодых животных светлее, чем у взрослых; у крупного рогатого скота светлее, чем у лошадей; на туловище светлее, чем на конечностях; у диких животных более темные, чем у домашних. Темные мышцы богаче миогло-бином (белок, связанный с ионом железа), с более густой сетью кровеносных сосудов и лучшим кровенаполнением. Пластинчатые мышцы характеризуются плоской формой брюшка, сухожилий, они расположены в основном на туловище. Толстые мышцы могут быть самой разнообразной формы - веретенообразной, грушевидной, конусовидной. Некоторые мышцы имеют несколько головок (дву-, грех- и четырехглавые). Встречаются мышцы с двумя брюшками (двубрюшные). В состоянии покоя мышца относительно напряжена, что называют тонусом мышцы.

Классификация скелетных мышц. Мышцы, выполняющие различные функции, отличаются друг от друга строением, и их подразделяют на динамические и статодинамические. В таких мышцах различают анатомический и физиологический поперечники. Анатомический поперечник проецируется перпендикулярной плоскостью, проведенной через середину мышечного брюшка, а физиологический поперечник - перпендикулярно направлению волокон.

Динамические мышцы по типу строения относят к простым мышцам, состоящим из пучков мышечных волокон, идущих параллельно продольной оси мышцы. У этих мышц анатомический и физиологический поперечники равны, они обеспечивают наибольший размах движения (плечеголовная мышца, прямая мышца живота и т.д.). При сокращении такие мышцы выигрывают в расстоянии, но проигрывают в силе.

Статодинамические мышцы имеют перистое строение и могут быть одно-, дву- и многоперистыми. В одноперистых мышцах пучки мышечных волокон идут в одном направлении косо, продольно оси волокна, так как сухожилия, к которым они прикрепляются, расположены на противоположных концах и поверхностях мышечного брюшка и образуют блестящие тяжи - «сухожильные зеркала». В двуперистых мышцах пучки мышечных волокон идут косо, но уже в двух направлениях, между тремя сухожилиями, одно из которых находится в середине мышечного брюшка, а два других - с противоположных концов, окружая его с двух сторон. В многоперистых мышцах пучки мышечных волокон проходят во многих направлениях, так как внутрь брюшка проникает несколько сухожилий.

Объем работы каждой мышцы измеряется затраченной силой, умноженной на затраченный путь.

Сила мышцы прямо пропорциональна числу мышечных волокон, а путь прямо пропорционален их длине. Чтобы определить силу мышц, используют условную площадь физиологического поперечника, который у перистых мышц всегда больше анатомического. Поэтому многоперистые мышцы выигрывают в силе, но проигрывают в расстоянии. Таким образом, сила мышцы зависит от ее физиологического поперечника и от числа мышечных волокон.

Животное в целом передвигается отнюдь не за счет беспорядочного сокращения различных скоплений мышечных клеток.

Мышечная активность координируется нервной системой, эта координация и обеспечивает совместную работу мышц. Каждая отдельная мышца сама по себе представляет гармоничное объединение сократимых единиц независимо от того, гладкие это мышечные клетки, поперечнополосатые или ветвящиеся волокна сердечной мышцы. Каждое такое объединение клеток обычно окружено тонким, но прочным листком соединительной ткани. В самом простом случае организации мышцы оси всех клеток или волокон располагаются параллельно, так что все они создают тягу в одном и том же направлении. Но не всегда дело обстоит так просто, в крупных мышцах нередко одни части мышцы должны создавать усилия в направлениях, не совпадающих с направлением других частей, или развивать большую силу сокращения. От многих мышц требуется только создание натяжения. Волокна этих мышц располагаются под углом к направлению тяги, так что их сокращение вызывает лишь незначительное укорочение мышцы, но создает очень большое усилие.

Одной из наиболее важных особенностей мышечных клеток является их способность развивать усилие в одном направлении — в направлении сокращения. Сократившаяся мышца не может сама себя растянуть. Поэтому необходимые для перемещения и разнообразных двигательных актов циклы сокращения и растягивания почти всегда требуют участия двух и более мышц. Работа таких мышц определяется особым строением скелета, так что сокращение одних мышц уравновешивается сокращением других. Мышцы, работающие таким образом, обычно называют антагонистами.

Типичным примером мышц-антагонистов могут служить мышцы конечностей позвоночных или членистоногих. Почти каждый сустав в конечностях позвоночного или членистоногого сгибается под действием одного или нескольких мышц-сгибателей и выпрямляется или разгибается благодаря одному или нескольким разгибателям. Сочетание расчлененного скелета и дифференцированной мускулатуры, характерное для позвоночных и членистоногих, и лежит в основе точных и повторно воспроизводимых движений, позволяющих этим животным вырабатывать чрезвычайно сложные формы поведения. Сгибатели и разгибатели обычно действуют одновременно, чем достигается очень тонкая проработка движений и усилий. Кроме того, стимуляция этих мышц нервной системой осуществляется способом автоматической координации, так что при сокращении одной группы мышц подавляется активность и происходит частичное расслабление другой. Антагонизм мышц — это не беспорядочное противодействие, а, наоборот, координированный, реципрокный механизм, при котором оба члена каждой пары поддерживают необходимый тонус, и если один расслаблен, другой сокращается и вызывает движение сустава.

В некоторых случаях сокращению одних мышц противодействуют не антагонисты, а упругость эластичной соединительной ткани. Сложным вариантом такого рода является мускулатура хрусталика глаза млекопитающих. Сферический хрусталик глаза обычно слегка уплощен из-за натяжения прикрепленных к нему волокон соединительной ткани. В такой форме хрусталик настроен на удаленные предметы. Сокращение ресничной мышцы (кольцо гладких мышечных клеток) ослабляет натяжение удаленных концов эластичных соединительнотканных волокон, позволяя хрусталику принимать более округлую форму и фокусировать изображение близко расположенных объектов. С возрастом хрусталик теряет свою эластичность, а вместе с этим и способность принимать сферическую форму, и в результате развивается дальнозоркость. Пожилые люди обычно вынуждены держать книгу в вытянутой руке, чтобы отчетливо видеть шрифт, если они, конечно, не пользуются очками. Другим примером «упругого антагонизма» служит замок раковины двустворчатого моллюска и стенка тела нематоды.

У многих животных стенка тела, стенка кишечного тракта и других трубчатых органов обычно содержит два слоя мышц. У позвоночных это, как правило, гладкие мышцы, за исключением стенки тела. Один слой мышц имеет кольцевые волокна, сокращение которых сужает просвет трубки или сжимает ее содержимое. Волокна другого слоя лежат продольно, под прямым углом к кольцевым волокнам, или параллельно оси трубки. При сокращении этих волокон трубчатый орган укорачивается и утолщается. Такое устройство характерно для стенки тела кишечнополостных, кольчатых червей и кишечного тракта более высокоорганизованных животных.

Чередование и координация сокращений кольцевых и продольных волокон по-разному изменяют форму полости трубки. Например, волна сокращения кольцевых мышц может медленно перемещаться вдоль трубки, и этот процесс, называемый перистальтикой, вызывает передвижение содержимого трубки в одном направлении. Особая разновидность кольцевых мышц, называемая сфинктером, разделяет различные сегменты трубчатого органа или контролирует вход и выход из него. Примерами такого рода могут служить анальный сфинктер, расположенный у окончания пищеварительной трубки, и пилорический сфинктер, регулирующий поступление желудочного содержимого в тонкий кишечник. Когда замкнутую полость трубчатого органа или мягкотелого животного окружают кольцевые и продольные мышцы, они все являются взаимно антагонистичными. Поскольку объем полости не может уменьшиться, то сокращение одних мышц обязательно вызывает растяжение других. Такую организацию мышц-антагонистов обычно называют гидростатическим скелетом. Наглядным примером животного, имеющего такой гидростатический скелет, служит дождевой червь: сокращение мышц стенки его тела может обеспечить передвижение даже в отсутствие столь характерного для других животных прочного скелета. Гидростатический скелет встречается и у животных, обладающих твердым скелетом. Трубчатые ножки иглокожих, например, работают по этому же принципу.

Какие бы действия ни совершал человек, он практически всегда задействует свою мышечную систему. Мышцы - это одна из основных частей нашего опорно-двигательного аппарата. Именно за счет их усилий мы можем принимать вертикальное положение и другие позы. Мышцы же брюшной стенки не только поддерживают внутренние органы, но и защищают их от механических повреждений и прочих неблагоприятных факторов среды.

За счет их работы мы глотаем, дышим и передвигаемся в пространстве. В конце концов, даже наше сердце является мышцей, а уж о его-то важности знает каждый! В этой работе мы задались целью рассказать вам о следующем:

  • Дать общую характеристику.
  • Рассказать об их строении.
  • Рассмотреть основные группы.
  • Обсудить функциональные свойства и некоторые сведения по механике работы.
  • А также рассмотреть, как изменяется мышечная система с возрастом.

Общие сведения

Мышцами называют специальные органы животных и человека, за счет сокращения которых мы можем двигаться. Образованы они специальными белковыми структурами, которые обладают способностью к сокращению. Нужно сказать, что мышечная система образует комплект вместе с компонентами соединительной ткани, нервами и кровеносными сосудами.

В человеческом теле имеется порядка 600 мышц. Большая часть из них образуют строго симметричные образования по обеим сторонам тела. У среднестатистического мужчины мышечная ткань составляет порядка 42% от общего веса тела, а у женщин эта доля составляет 35% (в среднем). Если же речь идет о пожилых людях, то у них это количество снижается до 30% или менее. У профессиональных спортсменов доля мышечной массы может увеличиваться до 52%, а у атлетов - до 63% и более.

Как мышечная ткань распределяется по конечностям

На нижних конечностях располагается вплоть до 50% всей мышечной ткани. Около 25-30% от ее общего количества крепится к плечевому поясу, и только 20-25% закреплено в области туловища и головы.

От чего зависит степень их развития

Конечно же, мышечная система развита у разных людей по-своему. Зависит она от многих факторов: пол, природная конституция и род деятельности - все имеет значение. Даже у спортсменов мышцы далеко не всегда бывают развиты одинаково хорошо. Заметим, что систематические физические нагрузки всегда приводят к перестройке этой системы. Ученые назвали это явление функциональной гипертрофией.

О названиях

Названия присваивались мышцам и целым их группам на протяжении веков. Чаще всего термины обозначают размер, форму, месторасположение или же иную характеристику того или иного органа. К примеру, большая ромбовидная (форма, размер), квадратный пронатор (функция и внешний вид), ягодичная (месторасположение) мышцы получили свое название именно по этим причинам.

Основные сведения о строении мышц

Как и всякая ткань в человеческом организме, они состоят из клеток. Их основной особенностью является сократимость. Все клетки мышечной ткани имеют вытянутую, веретенообразную форму. Сокращения их становятся возможными благодаря специальным белкам (актин и миозин), а энергию они получают от большого количества митохондрий (которые вообще характерны для этой ткани).

После каждого цикла сокращения наступает расслабление, во время которого клетки возвращаются к своему исходному виду. На сегодняшний день выделяют три типа мышечной ткани. Каждая из разновидностей имеет ярко выраженные различия в строении, так как отвечает за весьма специализированные функции в организме человека.

Основные типы мышечной ткани

Скелетные поперечнополосатые мышцы . Чаще всего они крепятся при помощи сухожилий к костям скелета. Именно благодаря им мы можем стоять, говорить, дышать и передвигаться в пространстве. Чаще всего термин «мышечная система человека» обозначает именно эту группу, так как ее работа видна наиболее наглядно.

Название «поперечнополосатые» произошло от их микроскопического строения, которое характеризуется чередованием поперечных полос светлого и темного оттенков (те самые миозин и актин). Эти мышцы нередко называют еще «произвольными», так как они полностью подконтрольны центральной нервной системе нашего организма. Впрочем, состояние тонуса (частичного напряжения) чаще всего не зависит от нашего сознания. Именно в этом состоянии костно-мышечная система человека находится чаще всего.

Сердечная мышечная ткань (миокард) . Составляет практически всю массу сердца человека. Ткань образована огромным количеством сильно ветвящихся, переплетенных волокон. У наших далеких предшественников, рыб и амфибий, эта ткань напоминает рыхлую сетку: кровь свободно проходит через нее, попутно отдавая кислород и питательные вещества. У человека же и прочих высших животных за питание сердечной мышцы отвечают коронарные сосуды.

Чем же строение мышечной системы отличается в этом случае? Все дело в том, что каждое волокно поперечнополосатой мышечной ткани - своеобразная «цепь» клеток, соединенных своими свободными концами. Как и в предыдущем случае, все они отличаются поперечной окраской. Как можно догадаться, эта ткань является непроизвольной, так как человек (за исключением специально тренированных людей) не может сознательно управлять сокращениями своего сердца.

Важно! Нередко в учебных пособиях задается каверзный вопрос о том, стенки каких полых внутренних органов содержат волокна поперечнополосатой мускулатуры… Правильный ответ - в артериях, аорте и конечном отделе прямой кишки. Артериям и аорте эти мышцы придают необходимую упругость и тонус. Что же касается прямой кишки, то именно мышечная система органов, которая может быстро сокращаться, делает возможным акт дефекации.

Гладкая мышечная ткань . Своим названием обязана тому факту, что ее волокна не имеют поперечного рисунка. Кроме того, ее миофибриллы не имеют той жесткой структурной организации, коя характерна для вышерассмотренных типов. Каждое из них имеет ярко выраженную веретенообразную форму, ядро в каждой клетке располагается строго центрально. Эта ткань входит в состав многих сосудов, внутренних полых органов, мочеполовой, дыхательной системы и прочих.

Чем же еще характеризуется строение мышечной системы человека в этом случае?

Особенности гладкой мышечной ткани

Чаще всего клетки в этом случае образуют продолжительные, массивные тяжи в стенках органов. Меж собой они соединяются при помощи прослоек соединительной ткани. Весь пласт пронизан нервными волокнами и кровеносными сосудами, посредством которых осуществляется трофика и иннервация соответственно. Как и в случае с сердечной тканью, гладкое мышечное волокно является непроизвольным, так как напрямую наше сознание его не контролирует.

В отличие от всех описанных выше разновидностей, характеризуются тем, что крайне медленно сокращаются, а затем настолько же медленно расслабляются. Это свойство крайне ценно, так как значение мышечной системы в этом случае - перистальтические движения нашего желудочно-кишечного тракта.

Ритмические, медленные сокращения стенок этих внутренних органов обеспечивают равномерное и качественное перемешивание их содержимого. Если бы за эти функции отвечала поперечнополосатая мускулатура, то содержимое того же кишечника достигало бы «финальной точки» всего за несколько минут, так что ни о каком пищеварении речи бы и не шло.

Способность же к длительному их сокращению также чрезвычайно важна: именно она позволяет надолго задерживать выход желчи из желчного пузыря или мочи из пузыря мочевого соответственно. Если у человека имеются какие-то болезни мышечной системы, связанные с дегенеративными процессами в ткани, у него с вероятностью 100% будут проблемы с органами пищеварения и выделения.

Именно тонус гладкой мышечной ткани в стенках крупных кровеносных сосудов определяет их диаметр и, соответственно, уровень кровяного давления. Соответственно, гипертоники страдают именно от слишком сильного сужения их просвета, когда кровяное давление опасно возрастает. При бронхиальной астме наблюдается практически та же самая картина: из-за каких-то факторов внешней среды (аллерген, стресс) возникает резкий спазм гладкой мускулатуры в стенках бронхов. В результате человек не может дышать, так как специфика данной ткани не предполагает быстрого расслабления.

Кстати, а за счет чего строение мышечной системы человека столь специфично? Конечно же, все зависит от элементарного ее строения, которое мы сейчас и обсудим.

Частные сведения о строении мышечной ткани

Как мы уже и говорили, центральным элементом мышечного волокна является клетка. Ее научное название - симпласт. Характерна своей веретенообразной формой и впечатляющими размерами. Так, длина одной клетки (!) может доходить до 14 сантиметров, тогда как ее же диаметр редко превышает несколько микрометров. Группы волокон плотно укрыты сарколемой, оболочкой.

Отдельные волокна также прикрыты соединительнотканной оболочкой, которую пронизывают кровеносные и лимфатические сосуды, а также веточки нервов. Пучки мышечных волокон и образуют мышцы, каждая из которых опять-таки закрыта соединительнотканной оболочкой, на каждой из полюсов переходящей в сухожилия (в случае поперечнополосатой ткани), посредством которых осуществляется закрепление на скелетных костях. Именно через сухожилия усилие передается на скелет. Сама мышечная система организма выполняет роль рычага.

Так мы можем двигаться и выполнять любые движения, которые требуются в какой-то определенный промежуток времени.

Управление мышечной активностью

Сократительная активность большей части мышечных клеток контролируется при помощи мотонейронов. Тела этих нейронов лежат в спинном мозге, а их аксоны, то есть длинные отростки, подходят к мышечным волокнам. Точнее говоря, каждый аксон идет к определенной мышце, и на входе в нее разветвляется на множество отдельных веточек, каждая из которых отвечает за иннервацию конкретного волокна. Именно поэтому костно-мышечная система человека (тренированного) работает с невероятной точностью.

За счет такого строения один нейрон контролирует целую структурную единицу, которая работает как одно целое. Так как каждая мышца состоит из десятков подобных моторных единиц, она может работать не целиком, а только лишь теми частями, участие которых требуется в конкретный момент. Чтобы лучше понимать строение мышечной системы в целом, нужно разбираться в нюансах на клеточном уровне. Мышечная же клетка, как вы уже наверняка поняли, в значительной степени отличается от обычной.

Характеристики клеточного строения

Начать стоит с того, что каждое волокно имеет несколько ядер. Такое строение связано с особенностями развития плода. Кстати, как вообще происходит развитие мышечной системы? Симпласты образуются из своих предшественников, миобластов. Последние характеризуются быстрым делением, в ходе которого они сливаются с образованием специфических мышечных трубок, которые характеризуются центральным расположением ядер. После этого начинается усиленный синтез миофибрилл (тех самых сократительных элементов), а затем ядра мигрируют на периферию клетки.

К этому времени они уже не могут делиться, а потому основная их функция - «поставка» информации для синтеза клеточного белка. Нужно заметить, что далеко не все миобласты во время своего развития сливаются друг с другом. Некоторая их часть представлена обособленными клетками-сателлитами, которые расположены прямо на поверхности мышечных волокон. Точнее говоря, они расположены прямо в сарколеме.

Эти клетки не утрачивают способности к делению и воспроизведению, а потому именно за их счет обеспечивается обновление и наращивание мышечной ткани на протяжении всей жизни человека. Многие генетические заболевания мышечной системы как раз-таки и развиваются на фоне нарушения процессов синтеза мышечного белка.

Кроме того, именно сателлиты ответственны за восстановление мышц при любом их повреждении. Если волокно погибло, они активизируются и превращаются в миобласты. А затем все происходит по-новому: они делятся, сливаются, образуют новые мышечные клетки. Проще говоря, регенерация мышцы полностью повторяет цикл ее развития во внутриутробный период.

Миофибриллы, механизм их функционирования

Какие еще существуют особенности мышечной системы? Кроме прочего, в цитоплазме клеток этой ткани есть множество тонких волоконец, миофибрилл. Они расположены строго упорядоченно, параллельно друг другу. В каждом волокне их может быть до двух тысяч.

Именно миофибриллы и отвечают за основную способность мышцы - сокращение. При поступлении соответствующего нервного импульса они уменьшают свою длину, орган сжимается. Если на них взглянуть под микроскопом, то вы снова увидите все те же самые чередующиеся светлые и темные полосы. При сокращении площадь светлых участков сокращается, а при полном сжатии они исчезают совсем.

В течение нескольких десятков лет ученые не могли дать сколь-нибудь вразумительной теории, которая бы объясняла способ, при помощи которого миофибриллы могут сокращаться. И только лишь полвека назад Хью Хаксли разработал модель скользящих нитей. На данный момент она практически полностью подтверждена экспериментально, а потому является общепринятой.

Основные группы мышц

Если вы учили анатомию хотя бы на базовом уровне, то наверняка помните о существовании трех больших групп, которыми и образована мышечная система человека:

  • Головной и шейный отдел.
  • Мышцы туловища.
  • Мускулатура конечностей.

Заметим, что мы не будем описывать тут все мышцы, так как в противном случае размеры статьи бы сравнялись с объемом анатомического справочника.

Возрастные изменения

Общеизвестно, что с возрастом весь наш организм сильно изменяется. Не является исключением и мышечная система. Так, с увеличением возраста человек начинает интенсивно терять мышечную массу. Волокно «сжимается», удлиняются сухожилия. Не случайно многие физически развитые люди с возрастом становятся очень жилистыми. Интересно, что длина ахиллова сухожилия у стариков составляет порядка девяти сантиметров, в то время как у подростков его размер не превышает трех-четырех.

Наконец, «пышным цветом» начинают проявляться заболевания мышечной системы. Связано это как с возрастными факторами, так и с резким уменьшением диаметра мышечного волокна: орган попросту не справляется с нагрузками, часто возникают микроскопические разрывы и прочие травмы. По этой причине пожилым людям настоятельно рекомендуется воздерживаться от интенсивных физических нагрузок.

Мышечная ткань признана доминантной тканью человеческого организма, удельный вес которой в общем весе человека составляет до 45 % у мужчин и до 30 % у представительниц прекрасного пола. Мускулатура включает разнообразные мышцы. Виды мышц насчитывают более шестисот наименований.

Значение мышц в организме

Мышцы играют крайне важную роль в любом живом организме. С их помощью приводится в движение опорно-двигательный аппарат. Благодаря работе мышц человек, как другие живые организмы, может не только ходить, стоять, бегать, совершать любое движение, но и дышать, жевать и перерабатывать пищу, и даже самый главный орган - сердце - тоже состоит из мышечной ткани.

Как осуществляется работа мышц?

Функционирование мышц происходит благодаря следующим их свойствам:

  • Возбудимость - это процесс активации, проявляемый в виде ответной реакции на раздражитель (как правило, это внешний фактор). Свойство проявляется в виде изменения обмена веществ в мышце и её мембране.
  • Проводимость - свойство, означающее способность мышечной ткани передавать образовавшийся в результате воздействия раздражителя нервный импульс от мышечного органа к спинному и головному мозгу, а также в обратном направлении.
  • Сократимость - конечное действие мускулатуры в ответ на стимулирующий фактор, проявляется в виде укорачивания мышечного волокна, также меняется тонус мышц, то есть степень их напряжённости. При этом скорость сокращения и максимальная напряжённость мускулатуры могут быть различными как следствие разного влияния раздражителя.

Следует отметить, что работа мышц возможна благодаря чередованию вышеописанных свойств чаще всего в следующем порядке: возбудимость-проводимость-сократимость. В случае если речь идёт о произвольной работе мускулатуры и импульс идёт от центральной нервной системы, то алгоритм будет иметь вид проводимость-возбудимость-сократимость.

Строение мышц

Любая мышца человека состоит из совокупности продолговатых действующих в одном и том же направлении клеток, называемой мышечным пучком. Пучки, в свою очередь, содержат мышечные клетки длиной до 20 см, именуемые также волокнами. Форма клеток поперечно-полосатых мышц продолговатая, гладких - веретенообразная.

Мышечное волокно представляет собой продолговатой формы клетку, ограниченную внешней оболочкой. Под оболочкой параллельно друг другу располагаются способные сокращаться белковые волокна: актиновые (светлые и тонкие) и миозиновые (тёмные, толстые). В периферийной части клетки (у поперечно-полосатых мышц) располагается несколько ядер. У гладких мышц ядро всего одно, оно имеет местоположение в центре клетки.

Классификация мышц по различным критериям

Наличие различных характеристик, отличных у тех или иных мышц, позволяет их условно группировать по объединяющему признаку. На сегодняшний день анатомия не располагает единой классификацией, по которой можно было бы сгруппировать человеческие мышцы. Виды мышц однако можно классифицировать по разнообразным признакам, а именно:

  1. По форме и длине.
  2. По выполняемым функциям.
  3. По отношению к суставам.
  4. По локализации в теле.
  5. По принадлежности к определённым частям тела.
  6. По расположению мышечных пучков.

Наряду с видами мышц выделяют три основные группы мышц в зависимости от физиологических особенностей строения:

  1. Поперечно-полосатые скелетные мышцы.
  2. Гладкие мышцы, составляющие структуру внутренних органов и сосудов.
  3. Сердечные волокна.

Одна и та же мышца может принадлежать одновременно к нескольким группам и видам, перечисленных выше, поскольку может содержать сразу несколько перекрёстных признаков: форму, функции, отношение к части тела и т.д.

Форма и величина мышечных пучков

Несмотря на относительно одинаковое строение всех мышечных волокон, они могут быть разной величины и формы. Таким образом, классификация мышц по данному признаку выделяет:

  1. Короткие мышцы приводят в движение небольшие участки опорно-двигательной системы человека и, как правило, находятся в глубоких слоях мускулатуры. Пример - межпозвоночные спинные мышцы.
  2. Длинные, наоборот, локализованы на тех частях тела, которые совершают большие амплитуды движений, например конечности (руки, ноги).
  3. Широкие покрывают в основном туловище (на животе, спине, грудине). Могут иметь разную направленность мышечных волокон, обеспечивая тем самым разнообразные сократительные движения.

Встречаются в организме человека и различные формы мускулатуры: круглые (сфинктеры), прямые, квадратные, ромбовидные, веретенообразные, трапециевидные, дельтовидные, зубчатые, одно- и двухперистые и мышечные волокна других форм.

Разновидности мускулатуры по выполняемым функциям

Скелетные мышцы человека могут выполнять различные функции: сгибание, разгибание, приведение, отведение, вращение. Исходя из данного признака, мышцы можно условно сгруппировать следующим образом:

  1. Разгибатели.
  2. Сгибатели.
  3. Приводящие.
  4. Отводящие.
  5. Вращательные.

Первые две группы всегда находятся на одной части тела, но в противоположных сторонах таким образом, что когда сокращаются первые, вторые расслабляются, и наоборот. Сгибающие и разгибающие мышцы приводят в движение конечности и являются мышцами-антогонистами. Например, мышца плеча бицепс сгибает руку, а трицепс разгибает. Если в результате работы мускулатуры часть тела или орган совершает движение в сторону тела, эти мышцы приводящие, если в обратном направлении - отводящие. Вращатели обеспечивают круговые движения шеи, поясницы, головы, при этом вращатели делятся на два подвида: пронаторы, осуществляющие движение внутрь, и супинаторы, обеспечивающие движение в наружную сторону.

По отношению к суставам

Мускулатура крепится с помощью сухожилий к суставам, приводя их в движение. В зависимости от варианта крепления и количества суставов, на которые воздействуют мышцы, они бывают: односуставные и многосуставные. Таким образом, если мускулатура крепится только к одному суставу, то это односуставная мышца, если к двум - двусуставная, а если больше суставов - многосуставная (сгибатели/разгибатели пальцев).

Как правило, односуставные мышечные пучки длиннее многосуставных. Они обеспечивают более полную амплитуду движения сустава относительно своей оси, поскольку расходуют свою сократительную способность только на один сустав, в то время как свою сократимость распределяют на два сустава многосуставные мышцы. Виды мышц последние короче и могут обеспечить гораздо меньшую подвижность при одновременном движении суставов, к которым они прикреплены. Ещё одним свойством многосуставной мускулатуры называют пассивную недостаточность. Её можно наблюдать, когда под влиянием внешних факторов мышца полностью растягивается, после этого она не продолжает движение, а, напротив, затормаживает.

Локализация мускулатуры

Мышечные пучки могут располагаться в подкожном слое, образуя поверхностные группы мышц, а могут и в более глубоких слоях - к ним относятся глубинные мышечные волокна. Так например, мускулатура шеи состоит из поверхностных и глубинных волокон, одни из которых отвечают за движения шейного отдела, а другие оттягивают кожу шеи, прилегающего участка кожи груди, а также участвуют в поворотах и опрокидываниях головы. В зависимости от расположения по отношению к определённому органу могут быть внутренние и наружные мышцы (наружные и внутренние мышцы шеи, живота).

Виды мускулатуры по частям тела

По отношению к частям тела мускулатура делится на следующие виды:

  1. Мышцы головы подразделяются на две группы: жевательные, отвечающие за механическое измельчение пищи, и мимические мышцы - виды мышц, благодаря которым человек выражает свои эмоции, настроение.
  2. Мышцы туловища подразделяются по анатомическим отделам: шейные, грудные (большая грудинная, трапециевидная, грудинно-ключичная), спинные (ромбовидная, широчайшая спинная, большая круглая), брюшные (внутренние и наружные брюшные, в том числе пресс и диафрагма).
  3. Мышцы верхних и нижних конечностей: плечевые (дельтовидная, трёхглавая, двуглавая плечевая), локтевые сгибатели и разгибатели, икроножные (камбаловидная), берцовые, мышцы стопы.

Разновидности мускулатуры по расположению мышечных пучков

Анатомия мышц у различных видов может отличаться расположением мышечных пучков. В связи с этим выделяют такие мышечные волокна, как:

  1. Перистые напоминают строение птичьего пера, в них пучки мышц крепятся к сухожилиям только одной стороной, а другой расходятся. Перистая форма расположения мышечных пучков характерна для так называемых сильных мышц. Место их крепления к надкостнице является довольно обширным. Как правило, они короткие и могут развивать большую силу и выносливость, при этом тонус мышц не будет отличаться большой величиной.
  2. Мышцы с параллельным расположением пучков также называют ловкими. По сравнению с перистыми они имеют большую длину, при этом менее выносливы, однако могут выполнять более тонкую работу. При сокращении напряжение в них значительно увеличивается, что значительно снижает их выносливость.

Группы мускулатуры по структурным особенностям

Скопления мышечных волокон образуют целые ткани, структурные особенности которых обуславливает их условное разделения на три группы:


Статьи по теме: